JONCTION PN (DIODE)

Droite de charge et point de fonctionnement

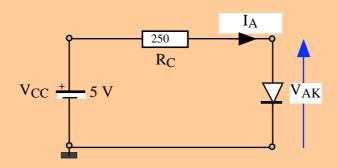
Influence de la température sur la caractéristique

Résistance dynamique aux petits signaux autour du point de repos

Linéarisation de la caractéristique

Quelques applications de la diode :

Montage écrêteur

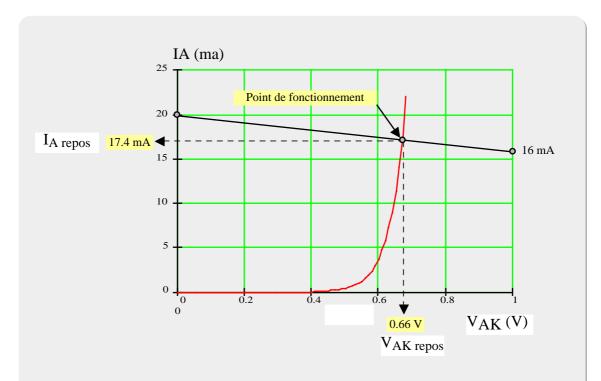

Redressement bi-alternances

Diode Zener : caractéristiques

Application de la diode Zener : alimentation stabilisée simple

Philippe ROUX tél.: 05 56845758

DROITE DE CHARGE D'UNE DIODE : POINT DE FONCTIONNEMENT

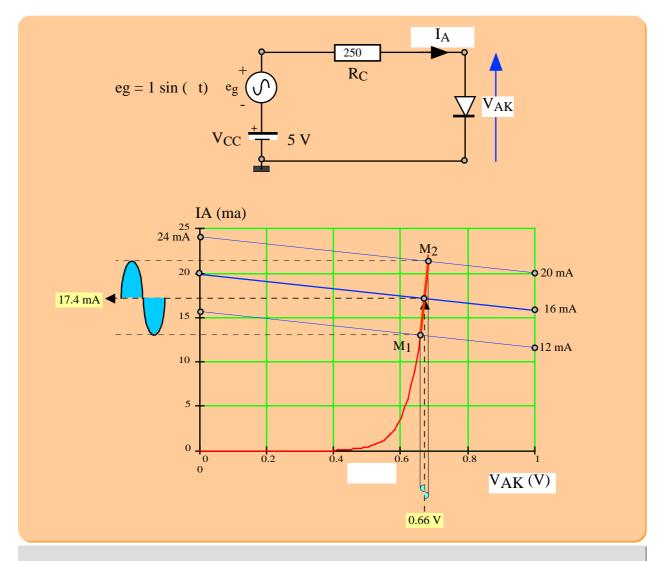


Equation de la droite de charge de la diode : VAK = - RC IA + VCC La droite de charge passe par les points :

$$I_A = 20 \text{ mA pour } V_{AK} \text{ nul}$$

 $I_A = 16 \text{ mA pour } V_{AK} = 1 \text{ V}$

Le point de fonctionement est l'intersection de la caractéristique de la diode avec la droite de charge. Le point de fonctionnement est tel que :


$$V_{AKrepos} = 0.66 \text{ V}$$
 et $I_{Arepos} = 17.4 \text{ mA}$

Loi de la diode : $I_A = I_S (exp(\frac{V_{AK}}{U_T}) - I)$

Is courant inverse de saturation
$$U_T = \frac{kT}{q} \approx 2.5 \quad \text{m Và} \quad 2^{\circ}C$$

RESISTANCE DYNAMIQUE AUTOUR DU POINT DE FONCTIONNEMENT

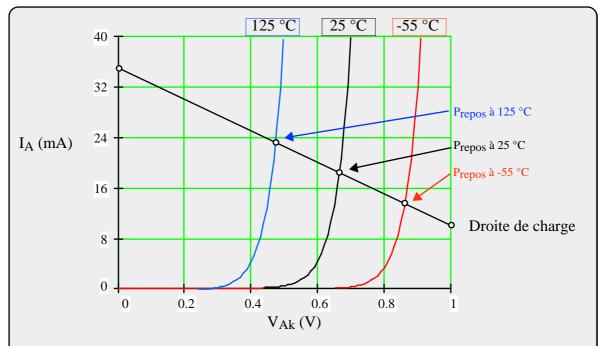
Equation de la droite de charge de la diode : $V_{AK}(t) = -R_{C}I_{A}(t) + eg(t) + V_{CC}$

La position de la droite de charge est fonction du temps. Son coefficient directeur est constant. Pour une tension V_{AK} nulle, le point de la droite de charge situé sur l'axe I_A évolue entre 16 et 24 mA.

Dans la mesure où l'on peut considérer la portion M1 M2 de la caractéristique comme un segment de droite (petites variations), la diode est parcourue par un courant continu I_A de 17.4 mA auquel se superpose un courant sinusoïdal :

$$I_A = I_{A renos} + I_{Am} sin (\omega t)$$

De même, à la tension continue de 0.66 V aux bornes de la diode, se superpose une tension sinuoïdale :


$$V_{AK} = V_{AK \ repos} + V_{Am} \sin(\omega t)$$

On définit la résistance dynamique r_d de la diode selon :

$$r_d = \left(\frac{dV_{AK}}{dI_A}\right)_{P0} = \frac{U_T}{I_{A\ repos}}$$

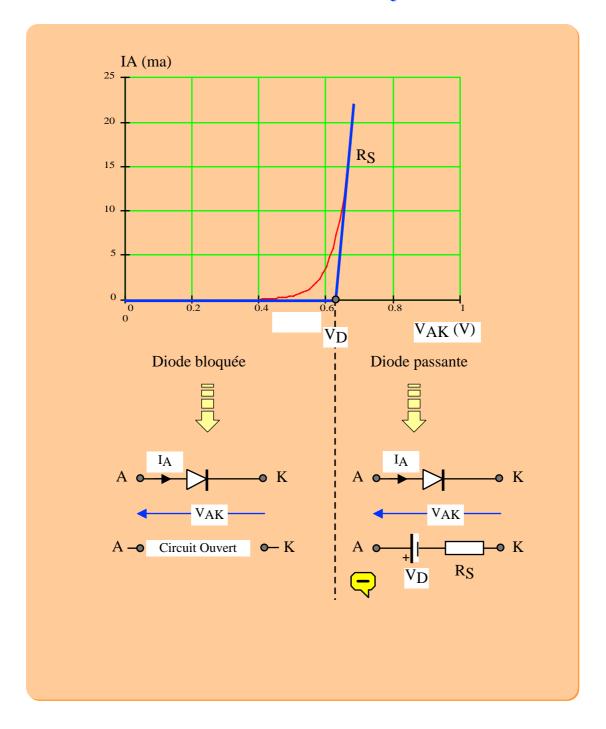
On en déduit alors : $V_{am} \sin(t) = r_d I_{Am} \sin(t)$

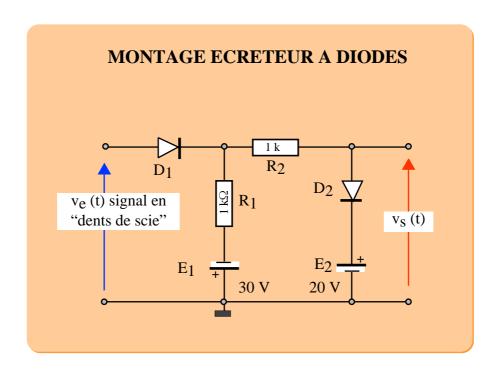
INFLUENCE DE LA TEMPERATURE SUR LA CARACTERISTIQUE DE LA DIODE

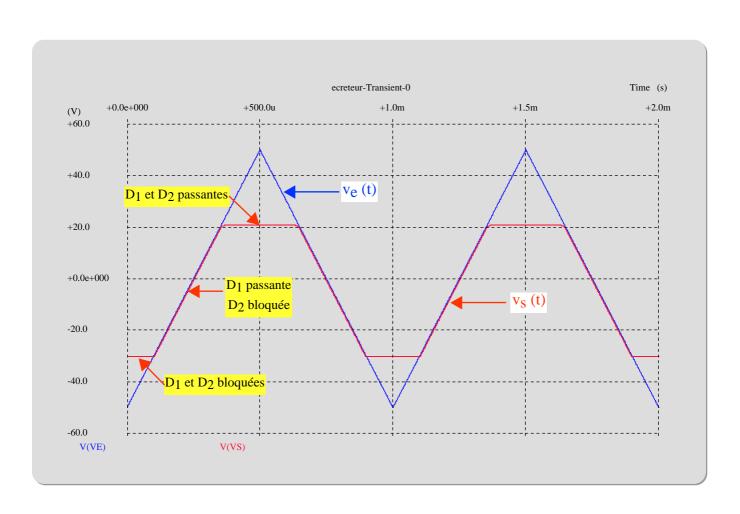
Loi de la diode et mise en évidence des paramètres dépendant de la température :

$$I_A = I_S \exp(\frac{V_{AK}}{U_T}) - 1$$

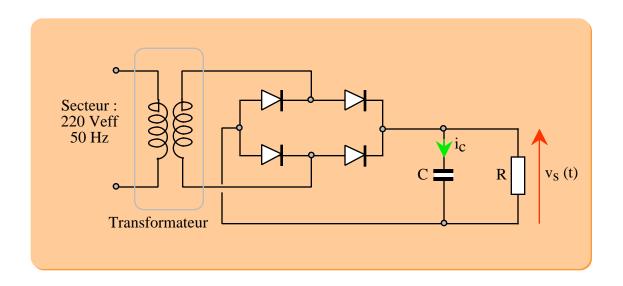
Courant inverse de saturation :

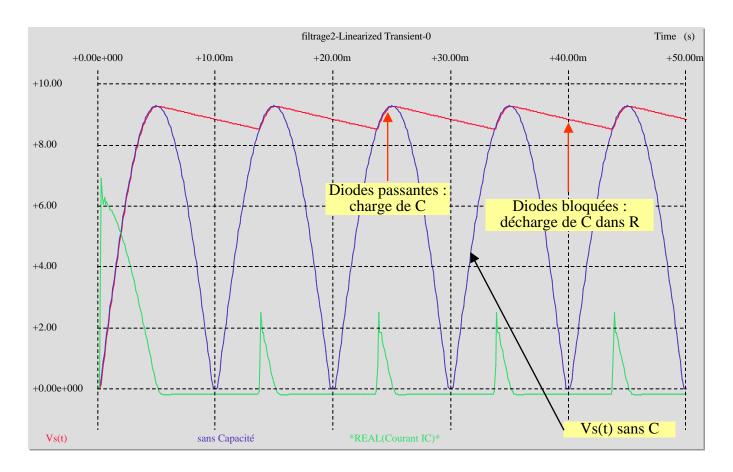

$$I_S = A \left[T^3 \exp\left(-\frac{E_G}{kT}\right) \right]$$

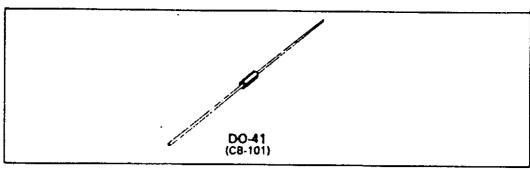

$$U_T = \frac{kT}{q}$$


Evolution de la tension V_{AK} en fonction de la température :

$$\frac{V_{AK}}{T} = -2.5 \ mV^{\circ}C^{-1}$$


LINEARISATION DE LA CARACTERISTIQUE D'UNE DIODE



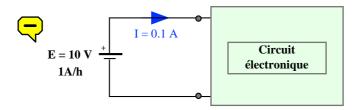


REDRESSEMENT BI-ALTERNANCES AVEC FILTRAGE

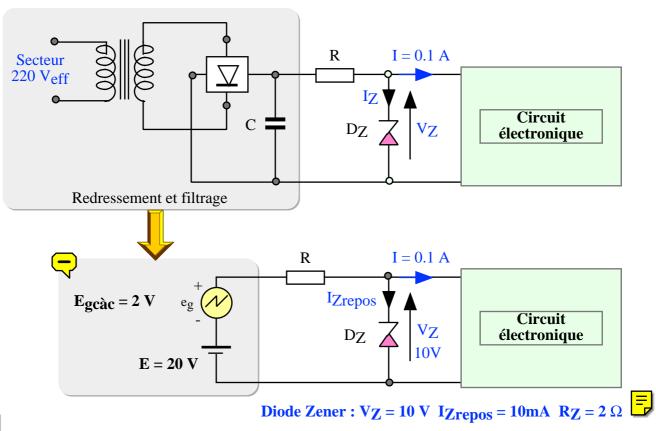
VOLTAGE REGULATOR DIODES DIODES DE REGULATION DE TENSION

Voltage regulator diodes Diodes de régulation de tension

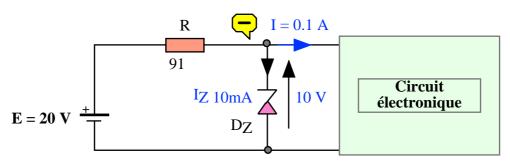
Epi Z[®] t_{emb} = 25 • C

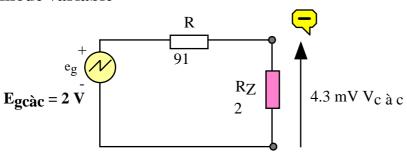

 $P_Z = 1.3 \text{ W/t}_{amb} = 25^{\circ}\text{C}$

 $V_F \le 1.7 / I_F = 200 \text{ mA}$


Type	Case	v _z ;	v _{zT} *	vz;/	/1	'zt	rzĸ/	1		_ ;		/ v_
Type	Boltier	(v)	(VI)	(v)/		ເຄົ່າ		(mA)		*c) (ÄV	1 V1
<u> </u>		min.	подъ.	mex.		.mex.	mex.		min	- mex -	THER.	
*8ZX 85 · C2 V7	DO-41	2,5	2,7	2,9	80	20	400	1	-0,08	-0,05	150	1
*BZX 85 - C3 V0	DO-41	2,8	3	3,2	80	20	400	1	-0,08	-0,06	100	1
*8ZX 85 - C3 V3	DO-41	3,1	3,3	3,5	80	20	400	1	-0,08	-0,05	40	1
*BZX 85 - C3 V6	DO-41	3,4	3,6	3,8	60	15	500	1	-0,08	-0,05	20	1
*8ZX 85 - C3 V9	DO-41	3,7	3,9	4,1	60	15	500	1	-0,07	-0,02	10	1
*BZX 85 - C4 V3	DO-41	4	4,3	4.6	50	12	500	1	-0.05		3	1
*82X 85 - C4 V7	DO-41	4,4	4,7	5	45	13	600	1	-0.03		3	1,5
*BZX 85 - C5 V1	DO-41	4,8	5,1	5,4	45	10	500	1	-0,01	+0,04	1	2
*BZX 85 - C5 V6	DO-41	5,2	5,6	6	45	7	400	1	0	+0,045	1	2
*BZX 85 - C6 V2	DO-41	5,8	6,2	6,6	35	4	300	1	+0,01	+0,055	ī	3
*BZX 85 - C6 V8	DO-41	6,4	6,8	7,2	35	3,5	300	1	+0,015	+0,06	1	4
*8ZX 85 - C7 V5	DO-41	7	7,5	7,9	35	3	200	0,5	+0,02	+0.065		4,5
*BZX 85 - C8 V2	DO-41	7,7	8,2	8,7	25	5	200	0,5	+0,03		1	5
*BZX 85 - C9 V1	DO-41	8,5	9,1	9,6	25	5	200	0,5	+0,035	+0,075	1	6,5
*BZX 85 - C10	DO-41	9,4	10	10,6	25	7	200	0,5	+0,04	+0,080	0,5	7
*8ZX 85 - C11	DO-41	10,4	11	11,6	20	8	300	0,5	+0,045	+0,080	0,5	7.7
*BZX 85 - C12	DO-41	11,4	12	12,7	20	9	350	0,5	+0,045	+0,085	0,5	8,4
*BZX 85 - C13	DO-41	12,4	13	14,1	20	10	400	0,5	+0,05	+0,085	0,5	9,1
*BZX 85 - C15	DO-41	13,8	15	15,6	15	15	500	0,5	+0,055	+0,09	0,5	10,5
*BZX 85 - C16	DO-41	15,3	16	17,1	15	15	500	0,5	+0,055			: 11
*BZX 85 - C18	DO 41	16,8	18	19,1	15	20	500	0,5	+0,06	+0,09	0.5	12,5
*BZX 85 - C20	00.41	19.B	20	21,2	10	24	600	0,5	40,06			14
*BZX 85 - C22	DO-41	20.8	_ 	23.3	10	25	600	0,5	+0,06	+0,095	•	15.5
*BZX 85 - C24	DO-41	22,8	24	25,6	10	25	500	0,5	+0.06	+0,095		17
*BZX 85 - C27	DO-41	25,1	27	28,9	8	30	750	0,25	+0.06	+0,095	<u> </u>	19
•		 .		 -							-,-	

^{*}Preferred device
Dispositif recommende


ALIMENTATION D'UN MONTAGE PAR UNE PILE 10 V 1A/h


REMPLACEMENT DE LA PILE 10 V PAR UNE ALIMENTATION STABILISEE SIMPLE

1) Analyse en mode continu : calcul de R

2) Analyse en mode variable

